
Polyspace® Bug Finder™ Server™ Release
Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ Release Notes
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2019b

Compiler Support: Set up Polyspace analysis easily for code
compiled with Cosmic compilers . 1-2

AUTOSAR C++14 Support: Check for misuse of lambda
expressions, potential problems with enumerations, and
other issues . 1-2

CERT C++ Support: Check for pointer escape via lambda
expressions, exceptions caught by value, use of bytewise
operations for copying objects, and other issues 1-4

CERT C Support: Check for undefined behavior from
successive joining or detaching of the same thread 1-4

New and updated Bug Finder defect checkers 1-5
New Checkers in R2019b . 1-5
Updated Checkers in R2019b . 1-6

MISRA C:2012 Directive 4.12: Dynamic memory allocation
shall not be used . 1-6

Configuration from Build System: Compiler version
automatically detected from build system 1-6

iii

Contents

R2019a

Bug Finder Analysis Engine Separated from Viewer: Run Bug
Finder analysis on server and view the results from multiple
client machines . 2-2

Continuous Integration Support: Run Bug Finder on server
class computers with continuous upload to Polyspace Access
web interface . 2-3

Continuous Integration Support: Set up testing criteria based
on Bug Finder static analysis results 2-4

Continuous Integration Support: Set up email notification with
summary of Bug Finder results after analysis 2-5

Offloading Polyspace Analysis to Servers: Use Polyspace
desktop products on client side and server products on
server side . 2-7

iv Contents

R2019b

Version: 3.1

New Features

Bug Fixes

1

Compiler Support: Set up Polyspace analysis easily for code
compiled with Cosmic compilers
Summary: If you build your source code by using Cosmic compilers, in R2019b, you can
specify the compiler name for your Polyspace® analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-bug-finder-server -compiler cosmic -target s12z -sources file.c

Benefits: You can now set up a Polyspace project without knowing the internal workings
of Cosmic compilers. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove unknown
language extensions from your preprocessed code.

AUTOSAR C++14 Support: Check for misuse of lambda
expressions, potential problems with enumerations, and other
issues
In R2019b, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-4 There shall be no unused

named parameters in non-
virtual functions.

AUTOSAR C++14 Rule
A0-1-4

A3-1-2 Header files, that are
defined locally in the
project, shall have a file
name extension of one
of: .h, .hpp or .hxx.

AUTOSAR C++14 Rule
A3-1-2

A5-1-2 Variables shall not be
implicitly captured in a
lambda expression.

AUTOSAR C++14 Rule
A5-1-2

A5-1-3 Parameter list (possibly
empty) shall be included in
every lambda expression.

AUTOSAR C++14 Rule
A5-1-3

R2019b

1-2

AUTOSAR C++14 Rule Description Polyspace Checker
A5-1-4 A lambda expression shall

not outlive any of its
reference-captured objects.

AUTOSAR C++14 Rule
A5-1-4

A5-1-7 A lambda shall not be an
operand to decltype or
typeid.

AUTOSAR C++14 Rule
A5-1-7

A5-16-1 The ternary conditional
operator shall not be used
as a sub-expression.

AUTOSAR C++14 Rule
A5-16-1

A7-2-2 Enumeration underlying
base type shall be explicitly
defined.

AUTOSAR C++14 Rule
A7-2-2

A7-2-3 Enumerations shall be
declared as scoped enum
classes.

AUTOSAR C++14 Rule
A7-2-3

A16-0-1 The preprocessor shall only
be used for unconditional
and conditional file inclusion
and include guards, and
using the following
directives: (1) #ifndef, (2)
#ifdef, (3) #if, (4) #if
defined, (5) #elif, (6)
#else, (7) #define, (8)
#endif, (9) #include

AUTOSAR C++14 Rule
A16-0-1

A16-7-1 The #pragma directive shall
not be used.

AUTOSAR C++ 14 Rule
A16-7-1

A18-1-1 C-style arrays shall not be
used.

AUTOSAR C++ 14 Rule
A18-1-1

A18-1-2 The std::vector<bool>
specialization shall not be
used.

AUTOSAR C++ 14 Rule
A18-1-2

A18-5-1 Functions malloc, calloc,
realloc and free shall not
be used.

AUTOSAR C++ 14 Rule
A18-5-1

1-3

AUTOSAR C++14 Rule Description Polyspace Checker
A18-9-1 The std::bind shall not be

used.
AUTOSAR C++ 14 Rule
A18-9-1

For all supported AUTOSAR C++14 rules, see “AUTOSAR C++14 Rules” (Polyspace Bug
Finder Access).

CERT C++ Support: Check for pointer escape via lambda
expressions, exceptions caught by value, use of bytewise
operations for copying objects, and other issues
In R2019b, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
DCL59-CPP Do not define an unnamed

namespace in a header file
CERT C++: DCL59-CPP

EXP61-CPP A lambda object shall not
outlive any of its reference
captured objects.

CERT C++: EXP61-CPP

MEM57-CPP Avoid using default operator
new for over-aligned types

CERT C++: MEM57-CPP

ERR61-CPP Catch exceptions by lvalue
reference

CERT C++: ERR61-CPP

OOP57-CPP Prefer special member
functions and overloaded
operators

CERT C++: OOP57-CPP

For all supported CERT C++ rules, see “CERT C++ Rules” (Polyspace Bug Finder
Access).

CERT C Support: Check for undefined behavior from
successive joining or detaching of the same thread
In R2019b, you can look for violations of these CERT C rules in addition to previously
supported rules.

R2019b

1-4

https://wiki.sei.cmu.edu/confluence/x/VXs-BQ
https://wiki.sei.cmu.edu/confluence/x/Vns-BQ
https://wiki.sei.cmu.edu/confluence/x/hns-BQ
https://wiki.sei.cmu.edu/confluence/x/SXs-BQ
https://wiki.sei.cmu.edu/confluence/x/lHs-BQ

CERT C Rule Description Polyspace Checker
CON39-C Do not join or detach a

thread that was previously
joined or detached

CERT C: Rule CON39-C

For all supported CERT C guidelines, see “CERT C Rules and Recommendations”
(Polyspace Bug Finder Access).

New and updated Bug Finder defect checkers
Summary: In R2019b, you can check for new issues and also see improved results for
previous checkers.

New Checkers in R2019b

Defect Description
Unnamed namespace in header file Header file contains unnamed namespace

leading to multiple definitions
Lambda used as decltype or typeid
operand

decltype or typeid is used on lambda
expression

Operator new not overloaded for
possibly overaligned class

Allocated storage might be smaller than
object alignment requirement

Bytewise operations on nontrivial
class object

Value representations may be improperly
initialized or compared

Missing hash algorithm Context in EVP routine is initialized without
a hash algorithm

Missing salt for hashing
operation

Hashed data is vulnerable to rainbow table
attack

Missing X.509 certificate Server or client cannot be authenticated
Missing certification authority
list

Certificate for authentication cannot be
trusted

Missing or double initialization
of thread attribute

Noninitialized thread attribute used in
functions that expect initialized attributes
or duplicated initialization of thread
attributes

1-5

https://wiki.sei.cmu.edu/confluence/x/L9UxBQ

Defect Description
Use of undefined thread ID Thread ID from failed thread creation used

in subsequent thread functions
Join or detach of a joined or
detached thread

Thread that was previously joined or
detached is joined or detached again

Updated Checkers in R2019b

Defect Description Update
Pointer or reference
to stack variable
leaving scope

Pointer to local variable
leaves the variable scope

The checker now detects
pointer escape via lambda
expressions.

MISRA C:2012 Directive 4.12: Dynamic memory allocation
shall not be used
Summary: In R2019b, you can look for violations of MISRA C®:2012 Directive 4.12. The
directive states that dynamic memory allocation and deallocation packages provided by
the Standard Library or third-party packages shall not be used. The use of these packages
can lead to undefined behavior.

See MISRA C:2012 Dir 4.12.

Configuration from Build System: Compiler version
automatically detected from build system
Summary: In R2019b, if you create a Polyspace analysis configuration from your build
system by using the polyspace-configure command, the analysis uses the correct
compiler version for the option Compiler (-compiler) for GNU® C, Clang, and
Microsoft® Visual C++® compilers. You do not have to change the compiler version before
starting the Polyspace analysis.

Benefits: Previously, if you traced your build system to create a Polyspace analysis
configuration, the latest supported compiler version was used in the configuration. If your
code was compiled with an earlier version, you might encounter compilation errors and
might have to specify an earlier compiler version before starting the analysis.

R2019b

1-6

For instance, if the Polyspace analysis configuration uses the version GCC 4.9 and some of
the standard headers in your GCC version include the file x86intrin.h, you can see a
compilation error such as this error:
/usr/lib/gcc/x86_64-linux-gnu/6/include/avx512bwintrin.h, line 2427:
 error: invalid type conversion
| return (__m512i) __builtin_ia32_packssdw512_mask ((__v16si) __A,
|

You had to connect the error to the incorrect compiler version, and then explicitly set a
different version. Now, the compiler version is automatically detected when you create a
project from your build command.

1-7

R2019a

Version: 3.0

New Features

2

Bug Finder Analysis Engine Separated from Viewer: Run Bug
Finder analysis on server and view the results from multiple
client machines
Summary: In R2019a, you can run Bug Finder on a server with the new product,
Polyspace Bug Finder™ Server™. You can then host the analysis results on the same
server or a second server with the product, Polyspace Bug Finder Access™. Developers
whose code was analyzed (and other reviewers such as quality engineers and
development managers) can fetch these results from the server to their desktops and
view the results in a web browser, provided they have a Polyspace Bug Finder Access
license.

Benefits: You can run the Bug Finder analysis on a few powerful server class machines
but view the analysis results from many terminals.

With the desktop product, Polyspace Bug Finder, you have to run the analysis and view
the results on the same machine. To view the results on a different machine, you need a

R2019a

2-2

second instance of a desktop product. The desktop products can now be used by
individual developers on their desktops prior to code submission and the server products
used after code submission. See Polyspace Products for Code Analysis and Verification.

Continuous Integration Support: Run Bug Finder on server
class computers with continuous upload to Polyspace Access
web interface
Summary: In R2019a, you can check for bugs, coding standard violations and other
issues on server class machines as part of continuous integration. When developers
submit code to a shared repository, a build automation tool such as Jenkins can perform
the checks using the new Polyspace Bug Finder Server product. The analysis results can
be uploaded to the Polyspace Access web interface for review. Each reviewer with a
Polyspace Bug Finder Access license can login to the Polyspace Access web interface and
review the results.

See:

2-3

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html

• Install Polyspace Server and Access Products
• Run Polyspace Bug Finder on Server and Upload Results to Web Interface

Benefits:

• Automated post-submission checks: In a continuous integration process, build scripts
run automatically on new code submissions before integration with a code base. With
the new product Polyspace Bug Finder Server, a Bug Finder analysis can be included
in this build process. The analysis can run a specific set of Bug Finder checkers on the
new code submissions and report the results. The results can be reviewed in the
Polyspace Access web interface with a Polyspace Bug Finder Access license.

• Collaborative review: The analysis results can be uploaded to the Polyspace Access
web interface for collaborative review. For instance:

• Each quality assurance engineer with a Polyspace Bug Finder Access license can
review the Bug Finder results on a project and assign issues to developers for
fixing.

• Each development team manager with a Polyspace Bug Finder Access license can
see an overview of Bug Finder results for all projects managed by the team (and
also drill down to details if necessary).

For further details, see the release notes of Polyspace Bug Finder Access .

Continuous Integration Support: Set up testing criteria based
on Bug Finder static analysis results
Summary: In R2019a, you can run Bug Finder on server class machines as part of unit
and integration testing. You can define and set up testing criteria based on Bug Finder
static analysis results.

For instance, you can set up the criteria that new code submissions must have zero high-
impact defects before integration with a code base. Any submission with high-impact
defects can cause a test failure and require code fixes.

See:

• polyspace-bug-finder-server for how to run Bug Finder on servers.
• polyspace-access for how to export Bug Finder results for comparison against
predefined testing criteria.

R2019a

2-4

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/install-products-required-for-polyspace-analysis-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/run-bug-finder-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_access/release-notes.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspacebugfinderservercommand.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspaceaccess.html

If you use Jenkins for build automation, you can use the Polyspace plugin. The plugin
provides helper functions to filter results based on predefined criteria. See Sample
Scripts for Polyspace Analysis with Jenkins.

Benefits:

• Automated testing: After you define testing criteria based on Bug Finder results, you
can run the tests along with regular dynamic tests. The tests can run on a periodic
schedule or based on predefined triggers.

• Prequalification with Polyspace desktop products: Prior to code submission, to avoid
test failures, developers can perform a pre-submit analysis on their code with the
same criteria as the server-side analysis. Using an installation of the desktop product,
Polyspace Bug Finder, developers can emulate the server-side analysis on their
desktops and review the results in the user interface of the desktop product. For more
information on the complete suite of Polyspace products available for deployment in a
software development workflow, see Polyspace Products for Code Analysis and
Verification.

To save processing power on the desktop, the analysis can also be offloaded to a
server and only the results reviewed on the desktop. See Install Products for
Submitting Polyspace Analysis from Desktops to Remote Server.

Continuous Integration Support: Set up email notification with
summary of Bug Finder results after analysis
Summary: In R2019a, you can set up email notification for new Bug Finder results. The
email can contain:

• A summary of new results from the latest Bug Finder run only for specific files or
modules.

• An attachment with a full list of the new results. Each result has an associated link to
the Polyspace Access web interface for more detailed information.

2-5

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

See Send E-mail Notifications with Polyspace Bug Finder Results.

Benefits:

• Automated notification: Developers can get notified in their e-mail inbox about results
from the last Bug Finder run on their submissions.

• Preview of Bug Finder results: Developers can see a preview of the new Bug Finder
results. Based on their criteria for reviewing results, this preview can help them
decide whether they want to see further details of the results.

• Easy navigation from e-mail summary to Polyspace Access web interface: Each
developer with a Polyspace Bug Finder Access license can use the links in the e-mail
attachments to see further details of a result in the Polyspace Access web interface.

R2019a

2-6

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html

Offloading Polyspace Analysis to Servers: Use Polyspace
desktop products on client side and server products on server
side
Summary: In R2019a, you can offload a Polyspace analysis from your desktop to remote
servers by installing the Polyspace desktop products on the client side and the Polyspace
server products on the server side. After analysis, the results are downloaded to the client
side for review. You must also install MATLAB® Parallel Server™ on the server side to
manage submissions from multiple client desktops.

2-7

See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

Benefits: The Polyspace desktop products have a graphical user interface. You can
configure options in the user interface with assistance from features such as auto-
population of option arguments and contextual help. To save processing time on your
desktop, you can then offload the analysis to remote servers.

R2019a

2-8

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

